Disconnection of working memory processes by cerebrovascular disease

Adriane B.V. Mayda,1 Christine Wu Nordahl,1 Evan Fletcher,1 William J. Jagust,2 and Charles DeCarli 1
1 Center for Neuroscience, University of California at Davis
2 Helen Wills Neuroscience Institute, University of California at Berkeley

Background
- Mild Cognitive Impairment (MCI) is characterized by episodic memory deficits beyond that expected for normal aging and is a heterogeneous syndrome with multiple etiologies, including cerebrovascular disease (CVD).
- Recent evidence shows that CVD as measured by MRI white matter hyperintensities (WMH) may indirectly affect episodic memory in MCI by disrupting working memory.

We propose that these working memory deficits are the direct result of white matter fiber tract disconnections. We hypothesized two potential systems: 1) Subcortical Frontal as described by Cummings or 2) Cortico-cortical containing parieto-occipital connections described by Goldman-Rakic.

Methods
- Imaging: We employed diffusion tensor imaging (DTI) to generate fractional anisotropy (FA) maps as a measure of white matter fiber tract conductivity.
- Subjects: Twelve MCI patients with varying degrees of WMH burden.
- Working memory tasks: 1) verbal 4-item recognition 2) 2-back
- Data analysis: Two different methods of analysis were employed including ROI-driven and inter-subject mapping.

Results
- FA values in several regions of interest were more strongly correlated with performance on the working memory tasks than WMH volumes in the same region.
- There appears to be a different pattern of white matter tract disruption for the 4-item recognition task (maintenance) and the 2-back task (manipulation).

Conclusions
1. CVD impairs cognitive function through disruption of white matter tracts.
2. Preliminary evidence suggests that multiple cognitive processes are affected and that these may involve disconnections of different and discrete white matter tracts. The maintenance task appears to be mediated by the superior longitudinal fasciculus, whereas the manipulation task appears to be mediated by more frontal regions.

References