What
Lurks Beneath the Depths: Does Cephalopod Consciousness Exist?
Lindsay
Jordan
The
Monterey Bay Aquarium houses two Giant Pacific Octopuses in the Deep Reef
gallery. One day, I was lucky enough to interact with the female octopuses. The
two behaved rather differently. One (whom I called “Stumpy” for she was missing
most of one leg) was rather gregarious. She “greeted” me from the moment I put
my hand in the tank and proceeded to suction on to me whenever and wherever possible.
The other octopus was much shyer; while she came to the surface in her bright
red color for her well-known aquarist, she darted into a corner, camouflaging
herself with the grey stone once I put my hand in. It took several shrimp to
get her to wrap around me, but she never as aggressive or playful as Stumpy.
After play-time, I helped the aquarist provide enrichments for the pair which
included stuffing shrimp into a screw-capped bottle, a dog-toy Kong, and a baby
puzzle ball. The first octopus readily seized her bottle and proceeded to
unscrew the cap and eat her shrimp in a matter of minutes. The second was left
to play with her ball throughout the day and by the time I left the shrimp was
gone. It was hard to imagine that these creatures I was interacting with were
“mere” invertebrates, slimy and soft sea creatures that are known as monsters
instead of masterminds.
I
recognize the anecdotal nature of my experience and the great potential for
anthropomorphic fallacy. However, it would be impossible for me to deny the existence
of personality, communication, memory and intelligence in these creatures. Most
sea animals – especially invertebrates – generally act in a survivalistic and
simple nature. But those animals in the group coleoidea of Cephalopoda,
the squids, cuttlefish, and octopus, seemingly defy this common tendency. Yet
to what extent do cephalopods go beyond being merely fascinating and smart?
Communication, memory, intelligence, and personality all seem to combine to
create a part of the self in humans.
Conscious human experience is dependent upon these things that compromise the self. So if the essential components of
the self are present in a cephalopod,
does this imply that the cephalopod is conscious? We face many challenges when
looking at cephalopod consciousness; linguistic barriers and a general lack of
experimental studies and data prevent any irrefutable conclusions to be drawn.
Trying to define and classify consciousness in general presents an even bigger
problem; since it is impossible to come to a universal agreement about human
consciousness, then it would be even more ludicrous to make definite
assumptions about cephalopod consciousness. Yet even with these issues, the
subject deserves examination. Only by carefully reviewing current studies on
different aspects of cephalopod consciousness can any conclusions be
drawn.
Even
the greatest skeptics of cephalopod consciousness do not refute the complex
behavior and mental abilities exhibited by cephalopods. Examining the advanced
neurological components of cephalopod nervous system can be used to establish the
animals’ capacity for consciousness. The cephalopod brain is “relatively enormous
by invertebrate standards” (Hanlon & Messenger, 1996, p. 28). A
cephalopod’s nervous system “comprises about 500 million cells” (Hochner,
Shomrat, & Fiorito, 2006) and the brain consists of approximately “thirty
anatomically distinct lobes” (Wells, 1962, p. 91). When brain sized is compared to body weight,
cephalopods, most notably the octopus and cuttlefish, rank just below the
average ratio of birds and mammals but above fish and reptiles (Hanlon &
Messenger, 1996, p. 1,3). Many scientists believe this complex and large brain
enables the high level of complexity in behavior and brain functioning seen in
cephalopods.
Due to
the intricacy of cephalopod brains, neuroscientists will often draw parallels to
vertebrate brains and point out “strikingly similar morphological organization
to areas of the vertebrate brain that mediate similar functions” (Hochner,
Shomrat, & Fiorito, 2006) For example, the optic lobes are the largest in
volume and “contain 120 to 180 million neurons” (Hochner, Shomrat, &
Fiorito, 2006) and have been shown to “handle visual processing and memory
establishment, as well as some higher motor control” (Edelman, Baars, &
Seth, 2005). It has been purposed that these optic lobes might be “analogous to
the vertebrate forebrain” (Edelman, Baars, & Seth, 2005). Lesion studies
that negatively impacted visual learning and memory have led some scientists to
relate “portions of the octopus frontal and vertical lobes….to parts of the
mammalian cortex” (Edelman, Baars, & Seth, 2005). There are even are
neurochemcial similarities between cephalopod and mammalian brains; “cephalopod
brains have all the classical neurotransmitters found in mammals” (Hanlon &
Messenger, 1996, p. 184). One such neurotransmitter is serotonin, which was
found to have a greater affect on octopus brains than it does in their mollusk
cousin Aplysi, commonly known as the
sea hare, a type of sea slug (Hochner, Shomrat, & Fiorito, 2006). Additionally,
“it may be relevant that cephalopods, like vertebrates, have a blood-brain
barrier” as this is typically “indicative of…a ‘better’ brain” (Hanlon &
Messenger, 1996, p. 184). The many resemblances between cephalopod and
vertebrate brain structures seem to be indicative of what makes these brains capable
of higher thinking attributed with many vertebrates.
What
does it mean for the cephalopods to have similar brain structures to
vertebrates? Except for solipsists, most people would agree with the fact that
many mammals, including humans, are conscious. Many of the theories about human
consciousness arise from the idea that consciousness somehow arises from
biological events. No matter if a man is an eliminative materialist who
believes consciousness is equivalent to biological processes, a mysterian who
says exactly how consciousness arises from brain processes will never be known,
or a functionalist who says mental states are executed by certain platform-independent
brain states, he would assert that a mammal’s brain somehow enables
consciousness to exist. Since cephalopod brains are similar to a mammals’, then
the possibility of a cephalopod’s brain somehow generating consciousness must
be considered.
Certain theories that relate
consciousness to brain functioning can begin to try and explain the potential
for cephalopod consciousness. The dynamic core hypothesis “implicate[s] the
thalamocortical system in the generation of conscious states” for humans, and
therefore “a search for homologous structures in other species…is obviously
warranted” (Edelman, Baars, & Seth, 2005). David Edelman of the
Neuroscience Institute in
Even with the uncertainty of
homologous structures, the dynamic core theory might still be applicable to
cephalopods. Another condition Edelman cites in his paper as a requirement for non-mammalian
consciousness is that the animals in question must exhibit “neural dynamics
analogous to those observed in mammals during conscious states” (2005). This condition for consciousness has been
tested with positive results. “Cephalopod brains, uniquely among invertebrates
have gross electrical properties similar to those of vertebrates” (Hanlon &
Messenger, 1996, p. 184). Experiments by Bullock and Budelmann managed to
measure “EEG patterns and event related potentials that seemed similar to
vertebrates” in some members of Cephalopoda
like cuttlefish (as cited in Mather, 2006). The animals even showed “event
related potentials that in humans are associated with cognitive events” (Hanlon
& Messenger, 1996, p. 184). Here empirical data has shown that cephalopods
can have analogous brain states as conscious vertebrates, implying cephalopods
have the same capacity for consciousness.
Another
analogous brain state that meets Edelman’s second condition is cephalopod
sleep. Sleep indicates that the animal is no longer in some former state of
“primary consciousness” since “there is a time when it’s aware and a time when it’s
not” (Mather, 2006). Many days at the aquarium, Stumpy will spend all day
curled inside a crevice, not moving a single arm or eye. This “state that
looked like behavior sleep” was observed in octopi in the wild and was defined
by “withdrawing into their homes, narrowing the pupils of their eyes, assuming particular
skin coloration and becoming unreactive to outside stimuli” (Mather, 2006). When
a human is kept awake, to write a paper for example, she will sleep much longer
than normal the next night and stay in the REM stage of sleep for longer (this
is called sleep rebound). Octopuses proved to resemble humans in this way; when
“stimulated during a sleep period…octopuses showed sleep rebound and slept for
a longer period the next night” (Mather, 2006). Both squid and octopuses will
display specific colors and/or patterning during their resting periods. Some
theorize this is the “cephalopod equivalent of mammalian REM sleep, which is
commonly associated with consolidation into episodic memory” (Mather, 2006).
The similarities to mammalian sleep help demonstrate that cephalopods undergo a
similar change from being conscious to unconscious when sleeping. Sleep
therefore implies that cephalopods must have some sort of consciousness which is
lost when sleeping and regained when they awake.
Edelman
lists one last criterion for the determination of non-mammalian consciousness:
an animal must display “rich discriminatory behavior that suggests a recursive
linkage between perceptual states and memory” (2005). According to this
condition then, cephalopods must have memory. Experiments over the last thirty
years have confirmed that cephalopods do indeed have a memory system. Extending
on has been mentioned earlier, the ability for memory can be attributed to the
cephalopod’s advanced brain, including the optic, vertical, superior, and
inferior frontal lobes (Edelman, Baars, & Seth, 2005). Specifically, the
vertical lobe or VL “appears essential for long-term learning and memory” (Hochner,
Shomrat, & Fiorito, 2006). Lesion studies in octopi have shown that while
the removal of the VL had no obvious effect on behavior – hunting, hiding,
eating, swimming, and sleeping continued as before – but when faced with a
learning task, the octopuses floundered and “impairment of acquisition or
retention becomes evident” (Hanlon & Messenger, 1996, p. 28). The ablation
of the VL negatively affected “short-term learning and long term memory
performance” (Hochner, Shomrat, & Fiorito, 2006). Since experiments have
shown that cephalopods have a memory system, the question of how their memory
results in consciousness can be considered.
The criteria
explicitly stated how behavior must reflect that there is a relationship
between the animal’s perception and memory. The median superior frontal lobe or
MSF “is thought to integrate sensory information…via a distinct tract running
between the VL…and its outer cell body layer” (Hochner, Shomrat, & Fiorito,
2006). This provides a crucial anatomical explanation for a possible connection
between perception (the integrated sensory input from the MSF) and memory
(processed and stored by the VL). When the MSF tract was studied, it was found
that after a stimulus, there was an “enduring increase in the synaptic field
potential, suggesting an activity-dependent long-term enhancement of the
synaptic connections” (Hochner, Shomrat, & Fiorito, 2006). The
experimenters explain how this is very similar to “long term potentiation (LTP)
in the vertebrate brain” and point out how “the octopus LTP appear to… closely
resemble…the LTP…in the CA3 region of the mammalian hippocampus” (Hochner,
Shomrat, & Fiorito, 2006). Brain structures support the idea that octopuses
can integrate memory and form perceptions, supporting the idea that cephalopods
are capable of having some form of consciousness.
The
last key component of the second non-mammalian consciousness condition included
“rich discriminatory behavior” that is a product of the perception and memory. So
far only neurological, anatomical and other brain related evidence has been
cited to show the potential for cephalopod consciousness. Yet consciousness
does not need to only be determined by brain functioning; when I was playing
with Stumpy in her tank, I had no way of knowing her internal brain states, how
her brain was processing similarly to mine, and how or if she was perceiving
for forming memories of me. It was the way she interacted with me that made me
feel like she was “thinking.” Some would say that the only way to judge whether
or not something is conscious is by its behavior. If it appears to act
consciously, then it must be conscious. Cephalopods exhibit many distinct
behaviors that help illuminate whether they are conscious.
A key but controversial behavioral
response that results from an octopus’ perception and memory is observational
learning. Performed by Fiorito and Scotto in
There are some critics who counter
the claim that cephalopods are capable of observational learning. Cephalopod
researcher Jean Boal is known to be the skeptic of cephalopod experimentation
and she questions the supposed observational learning experiments. She and
other experimenters “have been unable to reproduce Fiorito’s results” with
octopuses or cuttlefish (Scigliano, 2003). On further testing, Boal found that
octopuses hunted more successfully “if they had previously seen only a crab
without a predation event, of if they had simply smelt a crab” (
The existence or lack of observational
learning only begins to describe complex behaviors exhibited by cephalopods and
does not definitely prove that cephalopods are unconscious. There are several
behaviors that seem to indicate different types of cognitive processing in
cephalopods. As described in a paper by Jennifer Mather, octopuses will try
different ways to open bivalves. If the “quick but high energy expenditure
approach of pulling valves apart” does not work, then they will use “the slower
approach of drilling a hole though the shell” (Mather, 2006). If shells were
forcibly kept shut by wire, then octopi did not “persist in pulling but tried
drilling” (Mather, 2007). These actions indicate octopuses’ ability to be
flexible and change their actions. Mather states how “such flexibility in
selection of penetration techniques seems to indicate central decision-making”
(2007). Decision making implies that the octopus is not relying on pure
instinct when hunting as Boal might counter. Mather’s conclusions imply a
central processor where decision making occurs. This inner framework of thought
greatly resembles what cephalopods core consciousness would be.
Another cephalopod behavior that
indicates consciousness is the communication found in squid, cuttlefish and
octopus. Martin Moynihan in the 1980’s purposed that squid went beyond mere
survivalistic messaging; he declared that the color and pattern changes were
actually a complete and complex squid language. The capacity for formal language
would indeed imply that a cephalopod would have to be conscious since “the
definition of higher-order consciousness sometimes assumes that language and
consciousness go hand in hand” (Mather, 2006) While he admits certain features
of language are not present, Moynihan argues by “considering the design
features of human languages” it can be “applied to coleoids” (Moynihan, 1985,
p. 90). The following include some of the features of language that Moynihan
argues are present in squid: “broadcast transmission and directional
reception;” “rapid fading;” “specialization;” “semanticity;” “discreteness;”
“prevarication;” and “arbitrariness” (91). While everyone acknowledges that cephalopods
have amazing control over their colorations, virtually no one agrees with
Moynihan’s vast assumption that the skin patternings constitute a formal
language. Many point out that “signaling is a widespread phenomenanon amongst
animals and that animals…spend a considerable proportion of their time
signaling about the most important things in life…danger, food, and sex” (Hanlon
& Messenger, 1996, p. 129). This contradicts Moynihan’s claim since all of
the squids’ apparent “language” centers around those events; a formal language
must be able to “transmit a virtually infinite number of messages” which
Moynihan’s purposed squid language can’t as his signals were only mating,
feeding, etc. (Hanlon & Messenger, 1996, p. 129). The use of formal
language can not answer the conscious cephalopod question.
Even if Moynihan’s claims are
unbelievable, cephalopod signaling and communication can still be used to
indicate whether or not a cephalopod could be conscious. Cephalopods seem to
have some ability to purposely control their coloration. During mating, “squid
could produce one display on one side and a different one on the other, often
by a male giving an aggressive display to another male to one side and a sexual
one to a female on his other” (Mather, 2006) This bi-lateral display was “not
an automatic emotional one” implying that squid are “to direct their
displays…perhaps choosing to direct two with different ‘meanings’ to different
receivers at the same time” (Mather, 2006). This is another example of decision
making and another implication of central processing in cephalopods. This
central processing indicates that a
level of core consciousness must be present.
A key behavioral test of animal
consciousness has been self-recognition. Cephalopods fail the ultimate
experiment of self awareness, the mirror test. Male cuttlefish for example,
“gave…agonistic displays” towards a mirror (Mather, 2006). Yet failure of the
mirror test does not completely eliminate the possibility of cephalopods being
conscious. A cephalopod might have a more basic sense of self, an awareness of
its body. In the wild, octopuses were found to forage in an area for about a
week and then come back to their home; “returning to the central den after
these trips was clearly a result of spatial memory” and the fact they did not
“forage in areas they had recently covered” indicates “that they also had an
episodic memory of where they have been” (Mather, 2006). So while cephalopods
might not have reached complete self-recognition, they know where they are in a
larger space and can create some level of personal history. Personal history means
that there must be some fundamental unification of memory and primitive sense
of self – both of which are a part of consciousness. This reiterates the idea
that cephalopods must have some rudimentary level of consciousness.
But once again, it was not the
presence of observational learning, language or self-awareness that made me
think Stumpy was conscious. Stumpy had her own distinct personality; she
reacted differently than her neighbor. “Individuals show distinct personality
traits” according to a study that showed octopus behavior varied drastically
when “confronted with the same threat alerts and food stimuli” (Hamilton, 1997).
The fact that these “personalities were consistent over time and reflected
dimensions of activity…also seen in mammals” (Mather, 2006). To have personalities “does not argue for
consciousness directly” (Mather, 2006) but indicates that cephalopods processes
some sort of individuality. Personalities mean that reactions cannot be
attributed to instincts alone. The unique responses must be accredited to some
central unified processing, like core consciousness.
That
day at the Aquarium, I had no scientific basis for my personal feeling that the
creature I was interacting with was conscious. Certainly I did not think Stumpy
could ever understand quantum mechanics like a human could, but I still felt
there was more than just primal instinct at play. Science is beginning to
confirm my gut feeling. While it still remains vague, neuroscientists are
beginning to make parallels between octopus and mammalian brain anatomy. This
is providing an empirical basis for the belief that cephalopods are capable of
consciousness. The most persuasive findings are proving to be the evidence of
consciousness in cephalopod behavior. Experiments showing how cephalopods make
decisions, communicate, and learn are all confirming that cephalopods exhibit
behaviors that denote some core consciousness.
Science is far away from definitely showing that cephalopods not only
have the sufficient brain structures to enable consciousness and is even
further away from irrefutably proving that cephalopods act consciously. For
now, scientists and myself alike must use the limited data available to use to
draw reasonable conclusions; future studies hold the potential answer to what
extent are cephalopods conscious. For now, the studies of cephalopod brains and
behaviors merely confirm what I already knew the moment I played with her:
Stumpy is conscious.
Works
Cited
Mather,
J. (2006). Cephalopod Consciousness: Behavioral evidence. Consciousness and Cognition. Retrieved
Hamilton,
G. (1997, June 7). What is the octopus thinking? New Scientist, p. 3030.
Scigliano,
E. (2003, October 10). Through the Eye of an Octopus: An Exploration of the
brainpower of a lowly mollusk. Discover
Magazine.
Retrieved
Moynihan,
M. (1985). Communication and
Noncommunication by Cephalopods.
Vauclair,
J. (1996). Animal Cognition.
Edelman,
D., Baars, B., & Seth, A. (2005). Identifying hallmarks of consciousness in
non-mammalian species. Consciousness and
Cognition. Retrieved
Hochner,
B., Shomart, T., & Fiorito, G. (2006). The Octopus: A Model for a Comparative
Analysis of the Evolution of Learning and Memory Mechanisms.
The Biological Bulletin Virtual Symposium
on Marine Invertebrate Models of Learning and Memory. Retrieved
Wells,
M. (1962). Brain and Behavior in
Cephalopods. Stanford: